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Abstract. We have determined the coefficients of the Kardar-Parisi-Zhang equation as functions of coarse
graining, which best describe the time evolution and spatial behavior observed for slow-combustion fronts
in sheets of paper and magnetic flux fronts in a thin-film high-Tc superconductor. Reconstruction of the
relevant equation of motion and its coefficients was mainly based on the inverse method proposed by Lam
and Sander [Phys. Rev. Lett. 71, 561 (1993)]. The coefficient of the nonlinear term was also determined
from the local slope-dependence of the front velocity.

PACS. 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion – 64.60.Ht Dynamic critical phenomena

1 Introduction

The phenomena of kinetic roughening [1–4] of driven in-
terfaces are abundant in Nature. They can be observed
in the propagation of a forest fire or in the spreading of a
coffee stain in a paper towel. Both examples display, under
suitable conditions, a distinct interface moving through a
random medium, which becomes rough as time evolves.
From an experimental point of view convenient systems
for studying this kind of kinetic roughening phenomena
include slow-combustion (smouldering) fronts propagating
in sheets of paper [5–8] and magnetic flux fronts penetrat-
ing thin-film high-Tc superconductors [9].

A classification of kinetic roughening phenomena can
be obtained by relating the observed dynamics to those
of an appropriate Langevin equation with a noise term
which may have system specific correlations and even a
non-Gaussian magnitude distribution [3,4]. It has been
shown that the large-scale dynamics of a wide class of
roughening phenomena can be modelled with that kind of
continuum stochastic partial differential equations, such
as the Kardar-Parisi-Zhang (KPZ) equation [10] and its
variations [3,4]. For a moving interface the KPZ equation
is usually expressed in the form

∂th = c + ν∇2h +
λ

2
(∇h)2 + η , (1)

where h ≡ h(x, t) is the height of the interface, c its zero-
slope velocity, and η denotes the effective noise. If η is
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short-range correlated in time and space, it can be asymp-
totically substituted by uncorrelated Gaussian (white)
noise: 〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 = 2Dδ(x − x′)
×δ(t − t′).

Different approaches can be taken to determine the
possible universality class, with an appropriate evolu-
tion equation, which the considered process belongs to. A
straightforward and much used method is to measure some
of its scaling properties, such as (typically) a scaling ex-
ponent, and compare them (it) with the ones obtained
analytically or numerically for known models. The asymp-
totic scaling properties on long length and time scales of
the smouldering fronts, as well as of the magnetic flux
fronts, were shown in this way to be well described by
equation (1) with uncorrelated white noise [6,8,9]. An-
other approach, which however has not been used on ex-
perimental data before, is to directly determine the evolu-
tion equation from simulated or observed front evolution.

Several methods have been proposed for realizing the
latter approach, i.e., for the determination of the terms
and their coefficients in a growth equation that provide
the best fit to a known set of time-dependent and spatially
varying fronts. The variation of the growth velocity with
surface inclination has also been used by several authors to
classify the scaling properties of different systems [11–13].
Albert et al. [14] showed that the universality class can
thus be determined from snapshots of the interface pro-
file, and analyzed in this way interfaces obtained from
fluid-flow experiments. Lam and Sander [15] showed that
the relevant terms and their coefficients can be determined
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from simulated interfaces using an inverse method. They
proposed that the method may also be used on exper-
imental data. Giacometti and Rossi [16] suggested that
the model parameters can be extracted using an approach
based on the Fokker-Planck equation combined with a
least-squares error procedure. They later reported [17]
that the parameters of the KPZ equation should be able
to be determined reliably using an improved scheme that
hinges on a spectral representation of the KPZ equation.

While results are thus available on the extraction of
the terms and their coefficients for equations that describe
simulated interfaces, very little has been done on real ob-
served interfaces. In this article we now report results for
the terms and their coefficients in a stochastic partial dif-
ferential equation which best describes the front evolution
observed in smouldering fronts and magnetic flux fronts.

2 Experiments and data

The main components of the experimental system used
for smouldering fronts included a combustion chamber,
a camera system, and a computer with necessary hard-
ware and software. Experiments were initiated by igniting
a sheet of paper with an electrical heating wire stretched
across the paper sample. The propagation of the emerging
one-dimensional fronts was recorded with a three-CCD-
camera system including a fast on-line compression of
images for increased spatial and temporal resolution ∆x
and ∆t, respectively. A detailed description of the exper-
imental setup and the preparation of the samples can be
found in reference [8].

The sample used for the magnetic flux penetration ex-
periment was a YBa2Cu3O7−x(YBCO) thin (80 nm) film
on NdGaO3 substrate. The thin film was patterned, using
standard photolithography, in stripes with an aspect ra-
tio of 1:9 in the a-b plane, the long edge having a length
of 8.1 mm. The flux penetration was visualized using an
advanced magneto-optic image lock-in amplifier [18], by
which we directly determined the perpendicular compo-
nent of the magnetic field Hz at the surface of the sam-
ple. The advantage of this technique, compared to con-
ventional magneto-optics, is the improved sensitivity at
small magnetic fields, the intrinsic linearity in field, and
the direct measurement of the sign of the field. The sam-
ple was cooled in zero field to 4.2 K. After temperature
stabilization the magnetic field was applied perpendicular
to the sample surface, and stepwise increased from zero
to 17 mT. In every step the field was increased by 50 mT
with a sweeprate of 1 mT/s. After each step and a time-
delay of 6 seconds, the image was recorded. Images were
recorded with a charge-coupled device (CCD) camera us-
ing an acquisition time of 750 ms. Only the middle part of
the long edges of the sample was used for analysis to elim-
inate the effects of the corners on the shape of the fronts.
The flux front was determined from the MO image as the
borderline between the Shubnikov region, where vortices
are present, and the flux-free (Meissner) region. At this
borderline, by definition, the local intensity equals the in-
tensity of the Meissner region plus 3 times the standard

deviation of the noise in this intensity. Magnification was
such that a pixel corresponded to 1.4 µm.

The effective coefficients applicable in equation (1)
were estimated for smouldering fronts h(x, t) of width L,
as terms of higher order were found to be irrelevant
(see below for a discussion on this). The front data used
here include those of (i) 18 burns of Kangas copier-paper
and (ii) 32 burns of Whatman lens-paper sheets. The sam-
ple width L was approximately 28 cm (∆x = 273.4 µm,
∆t = 0.4 s) and 14 cm (∆x = 137.6 µm, ∆t = 0.1 s)
for copier- and lens-paper samples, respectively. The mag-
netic flux fronts were affected by some macroscopic defects
in the sample used, which limited the width of the ana-
lyzed stripe to 358 µm (∆x = 1.4 µm, ∆t = 50 ms).
In the lens-paper and flux-front data, digitizing errors
and other erratic non-Gaussian factors in the recorded
fronts were reduced by using a new filtering method (see
Appendix A).

3 Inverse method

3.1 Description of the method

The inverse method applied here closely follows the gen-
eral approach proposed by Lam and Sander [15]: the evo-
lution equation for the fronts is first written in the form

∂h(x, t)
∂t

= a ·H(x, t) + η(x, t), (2)

where a is a vector that contains the relevant coefficients of
the equation, e.g., a = (ν, λ/2, . . . ), and H(x, t) is a vec-
tor containing derivatives of h(x, t) and powers of these
derivatives. Since the observed quantities are determined
from the experimental data composed of digital front im-
ages, the single-valued function h(x, t) is replaced by hi(t)
with subscript i the lattice index. The lattice has spac-
ing ∆x and N ≡ L/∆x sites, where L is the sample width.
The time interval between subsequent images is denoted
by ∆t. One then discretizes equation (2) so that it is coarse
grained up to length � and up to time τ (a multiple of ∆t),
such that

∆hi(t)
τ

� a ·Hi(t) + ηi(t). (3)

For the KPZ equation, equation (1), the parameter
vector a and the interface derivative vector H, respec-
tively, are of the form

a =
[
c, ν,

λ

2

]
, (4)

Hi(t) =
[
1,∇2h, (∇h)2

]
. (5)

In this work a and H were mainly of this form, but also
higher-order derivatives were tested in H, and correspond-
ing additional coefficients in a. Since the average height
of the fronts h(t) = (1/N)

∑
i hi(t) had in all cases a clear

linear trend in time, the zero-slope velocity c was assumed
to be constant. To determine Hi(t), all the fronts were
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first coarse grained by truncating their Fourier compo-
nents with wavelengths smaller than �. This means that
from the (discrete) Fourier transforms of the front heights,

ĥqn(t) = ∆x

N∑
i=1

e−iqnxi hi(t), (6)

in which qn = 2πn/L, all wavelength components ĥqn(t)
with a wavenumber qn ≥ π/� were set to zero. For
∆hi(t)/τ we used the forward difference approximation
with ∆hi(t) = hi(t + τ) − hi(t). Subsequent differentia-
tions and multiplications were carried out in the Fourier
and the real space, respectively. The parameter vector a
was then determined by solving mina J (a), where

J (a) =

〈[
∆hi(t)

τ
− a ·Hi(t)

]2
〉

i,t

. (7)

Notice that in equation (7) it is implicitly assumed that
the noise characteristics, distributions and correlations of
ηi(t), are the same for all the data over which the aver-
age is taken. Moreover, basically one should also include
in equation (7) the restriction of the relevant coefficients
into physically reasonable values (e.g. c and ν should be
positive). Here, however, the relevance of the values ob-
tained was checked only afterwards. Once a minimizer a∗
of equation (7) is determined, the noise correlator D fol-
lows from

D =
�τ

2
J (a∗) . (8)

All the parameters c, ν, λ, and D thus obtained depend on
the spatial and temporal resolution � and τ , respectively.
For c and λ we however expect to find convergence to
constant values independent of coarse graining for large
enough values of � and τ , while no such convergence is
expected for ν and D [15].

3.2 Results

In Figure 1 (Fig. 2) we show the averaged KPZ coef-
ficients c, λ, ν, and D for the copier-paper (lens-paper)
burns as functions of the spatial coarse-graining param-
eter �, for different values of the temporal coarse-graining
parameter τ . For small τ when the effects of temporal dis-
cretization vanish more rapidly, coefficients c and λ level
off at relatively small � to more or less constant values. For
larger τ leveling off appears at larger �, but the asymp-
totic values of the parameters seem to be quite close to
the plateaux found for small τ . We therefore found it
sensible to determine the parameter values for a small
coarse-graining time, τ = 0.4 s, as averages over a fairly
short length scale just above the crossover scale (to the
asymptotic KPZ behavior) in the spatial height-height
correlation function: � ∈ [11.6 mm, 17.6 mm]. Coarse-
graining time was now smaller than the crossover time,
and the results obtained should be somewhat affected by
the correlated non-Gaussian noise at short time scales [8],
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Fig. 1. Coarse graining of the model parameters c, λ,
ν, D determined by the inverse method and averaged
over 18 copier-paper burns. Here � is the cutoff wave-
length of the Fourier components and the values of τ are
0.4 ( · ), 0.8 (◦), 1.6 (×), 3.2 (�), 6.4 (∗), 12.8 (�), and
25.6 s (�).
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Fig. 2. Model parameters c, λ, ν, and D determined
by the inverse method and averaged over 32 lens-paper
burns, as functions of the cutoff length � for τ =
0.1 ( · ), 0.2 (◦), 0.4 (×), 0.8 (�), 1.6 (∗), and 3.2 s (�).
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Fig. 3. Model parameters c, λ, ν, and D determined by
the inverse method and averaged over 9 sets of magnetic
flux fronts, as functions of the cutoff length � for τ =
0.5 ( · ), 1.0 (◦), 1.5 (×), 2.0 (�), 2.5 (∗), 3.0 s (�), and
3.5 (�) s.

as the inverse method assumes uncorrelated white noise.
This effect seems however to be quite small. We find that
c = 0.49(2) mm/s and λ = 0.40(2) mm/s for the copier-
paper fronts, and c = 9.2(5) mm/s and λ = 4.1(2) mm/s
for the lens-paper fronts.

Figure 3 shows the averaged KPZ coefficients as func-
tions of � for the magnetic flux fronts. The values were
obtained by averaging over 9 sets of fronts measured on
the same sample. The inverse method and the system size
set an upper limit for the feasible coarse-graining length,
� ≈ 45 µm, for the current sets of fronts, which is some-
what smaller than the crossover length rc ≈ 60 µm esti-
mated from the spatial height-height correlation function
in reference [9]. Estimates for coefficients c and λ were
now made as averages over the coarse-graining lengths
� ∈ [11.2 µm, 19.6 µm], and, by similar reasoning as
above, for τ = 0.5 s. Since all nine measurements were
made on the same sample, noise averaging (over structural
defects in the sample) was less extensive than for the slow-
combustion fronts, and saturation of the parameter values
was not quite as good. c and λ can however be measured
by other methods, and we think the values found by the
inverse method, c = 27.0(1) µm/s and λ = 15.9(8) µm/s,
are fairly reliable as they are consistent with the other
estimates.

Because of a fluctuation-dissipation theorem, coeffi-
cients ν and D are expected [10] to depend asymptotically
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Fig. 4. The renormalization of the ratio D/ν as a function
of the cutoff length � for (a) copier-paper and (b) lens-paper
fronts, and (c) magnetic flux fronts. For each case the sym-
bols for different τ ’s corresponds to those used in Figures 1–3,
respectively.

in the same way on the coarse-graining parameter � (see
below and [15] on the effects of finite τ) so that their ratio
should converge to a constant value. We therefore show
in Figure 4 the ratio of noise correlator D to ’surface ten-
sion’ ν for the fronts in both paper grades and the mag-
netic flux fronts. Asymptotically this ratio indeed seems to
converge to a constant value for all cases. This asymptotic
value appears to approach the one D/ν reaches, for larger
coarse-graining times, toward the upper ends of the length
intervals used to determine the estimates for c and λ, so
we determined this ratio for � = 17.5 mm and τ = 25.6 s
for the copier-paper fronts, � = 17.6 mm and τ = 1.6 s for
the lens-paper fronts, and � = 19.6 µm and τ = 3.5 s for
the magnetic flux fronts.

In this way we find that D/ν is 4.6(1.1) mm for the
lens-paper fronts, 0.83(5) mm for the copier-paper fronts,
and 6(3) µm for the magnetic flux fronts. Previously, we
have reported [8] values for the asymptotic amplitude A
of the spatial height-height correlation function, which
is A = D/ν. The reported results, D/ν � 3.4 mm for
the lens-paper and D/ν � 0.48 mm for the copier-paper
fronts, are in fairly good agreement with the present re-
sults, especially with those for lens paper, which have the
best statistics.

Assigning individual values to ν and D is not straight-
forward as they admit renormalization. Simulation results
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Table 1. Measured average values for KPZ coefficients and the ratio D/ν. For the slow-combustion fronts l = 11.6 . . . 17.6 mm
and τ = 0.4 s, and for the magnetic flux fronts l = 11.2 . . . 19.6 µm and τ = 0.5 s, were used as the coarse-graining scales for c
and λ. The scaled ν and the D/ν ratio were determined for � = 17.5 mm and τ = 25.6 s (copier-paper), and � = 17.6 mm and
τ = 1.6 s (lens-paper). The D/ν ratio for the magnetic flux was determined for τ = 3.5 s and � = 22.4 µm.

Coefficient Inverse method Slope-dependent velocity
Copier Lens Flux Copier Lens Flux
×1 ×1 ×10−3 ×1 ×1 ×10−3

c [mm/s] 0.49(2) 9.2(5) 27.0(1) 0.485(2) 9.1(2) 27.1(2)
λ [mm/s] 0.40(2) 4.1(2) 15.9(8) 0.37(3) 5.1(2) 17.4(2)

ν
(

τ
∆t

)−1/3
[mm2/s] 0.049(3) 2.0(1) – – – –

Dν [mm] 0.83(5) 4.6(1.1) 6(3) – – –

indicate [15] that for finite τ they should level off as func-
tions of � to values that scale as τβ . For totally uncor-
related fronts this is also expected from renormalization-
group flows for the KPZ equation (in 1+1 dimensions) [15]
as then renormalization at large � is controlled by τ . For ν
this appears to be the case for the slow-combustion fronts,
for intermediate values of �. Asymptotically (in �) there is
however indication that ν scales roughly as �χ, but con-
tinues to have a similar τ -dependent amplitude. For the
magnetic flux fronts tendency is rather similar but, prob-
ably due to averaging being too limited for this particular
quantity, there is not enough accuracy to determine the
actual scaling. Therefore, we show in Table 1 the scal-
ing form ν(τ/∆t)−β only for the slow-combustion fronts.
Here the same coarse-graining parameters were used as
for the D/ν ratio. For increasing τ discreteness effects be-
gin to appear at small �, and possible leveling off of the
ν(�) curves appears at larger values of �. In the case of
slow-combustion fronts, effective noise also plays a role at
small �’s. In the case of magnetic flux fronts the structure
of effective noise is different. There is rather little struc-
tural disorder in the samples in small length scales, and it
mainly appears in (relatively speaking) large scales. This
is the probable reason for the ‘reverse’ τ dependence of
both ν and D in the slow-combustion and magnetic flux
fronts.

For D no τ -dependent leveling off was observed for
any data. Especially for increasing τ values D seems to
behave roughly as τβ�χ, but we do not have any argu-
ment to support this kind of behavior, and give here no
scaling forms for D. In Table 1 we have thus listed the av-
eraged experimental values for c, λ, ν(τ/∆t)−β , and D/ν,
as determined for the coarse-scaling scales specified above.
It is of course possible that leveling off would appear at
still higher values of �. However, for the present widths of
the samples the statistics for increasing � become too low
to actually observe it.

We also tested the inverse method for non-KPZ equa-
tions by including higher-order terms with related coeffi-
cients, and comparing the results with those from numer-
ical simulations of a discretized KPZ equation with real
noise as determined by optical scans of lens-paper samples.
It appears that the inverse method finds it difficult to dis-
tinguish, e.g., a fourth-order derivative from noise, while

the other KPZ parameters seemed to be more or less un-
affected by inclusion of this term. On the other hand, the
data produced by KPZ simulations with real noise gave
as well rise to a non-zero fourth-order derivative when the
inverse method was applied to these data. Also, the co-
efficient of the fourth-order derivative was higher for the
simulated data than for the measured data. In this sense
we can conclude that no evidence was found for the ex-
istence of higher-order terms in the equation of motion
for the measured fronts. Evidently, a more robust inverse
method should be used to determine the actual form of
the evolution equation from noisy experimental data, if
possible at all.

4 Slope-dependent velocity

4.1 Theory

An alternative way to measure c and λ from experimen-
tal data can be based on the fact that front velocity, in
the length scale being considered, depends on the average
slope of the front in that scale. For a front whose dynam-
ics is governed by the KPZ equation, equation (1), the
average velocity v in scale � is given by

v = v0 +
λ

�

∫ �

0

dx
√

1 + (∇h)2, (9)

where v0 is the drift velocity due to the external forces
acting on the front, and we have kept the full square-
root term in this expression. Assuming (∇h)2 is small,
the above expression can be expanded as usual so that

v ≈ v0 +
λ

�

∫ �

0

dx
[
1 +

1
2
(∇h)2 − 1

8
(∇h)4 + . . .

]
(10)

= c +
λ

2�

∫ �

0

dx (∇h)2 + O [(∇h)4] , (11)

where c ≡ v0 + λ is the zero-slope velocity.
If there is now a non-zero average slope m ≡ 〈(∇h)〉 in

an interval of length � of the front, the result equation (11)
means that the front velocity in that interval is given by

v(m) ≈ c +
λ

2
m2. (12)
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The v(m) of equation (12) is the local-slope dependent
velocity as observed in a coarse-grained scale �. By mea-
suring v(m), one should thus find a parabolic dependence
which, by equation (12), gives an estimate for the coeffi-
cient of the nonlinear term, λ [2,3].

From experimental data the slope-dependent front ve-
locity can be evaluated by applying, e.g., the procedure
described by Albert et al. [14]: the discretized front height
hi(t) of length N (= L/∆x) is partitioned into overlap-
ping segments of length �. The local slope si(t) of each
segment i at time t is determined by a linear fit to the in-
terval (i, i+�−1), with i = 1, 2, . . . , (N −�+1). The same
partitioning, and determination of the slopes of the seg-
ments, is then repeated for the front at time t+τ , and the
average velocity of each segment (local velocity) is deter-
mined from

ui(t) =
1
�

�−1∑
j=0

[
hi+j(t + τ) − hi+j(t)

τ

]
· (13)

The average velocity of all segments with slope s is then
given by

u(s) =
1

N(s)

∑
i,t

ui(t) , (14)

where si(t) ∈ [s − ∆s/2, s + ∆s/2] with ∆s a suitable
discretization step for the slope values, and N(s) is the
number of such segments. The slope of each segment is
determined as the average of the initial (at time t) and
final (at time t + τ) slope. In the following we will use
the values ∆s = 4 × 10−3 for both paper grades, and 0.1
for the magnetic flux fronts. If u(s) plotted as a func-
tion of s indeed has a parabolic form, it indicates that a
slope-dependent nonlinear term is present in the growth
equation.

4.2 Results

We determined the local-slope dependent velocity u(s) for
the two sets of smouldering paper data and the mag-
netic flux front data described above. Figures 5–7 show
the slope-dependent velocities for the copier-paper, lens-
paper, and magnetic flux fronts, as functions of s2, for
several τ ’s and �’s. In all three sets of results, a linear
trend was found in the u(s) vs. s2 curve, for all τ ’s and
�’s, when s → 0. This linear behavior broke down with in-
creasing s for small segment lengths � (see Figs. 5a and 6a),
which could be explained by adding higher order terms
in the expansion equation (11). However, the effect of
higher-order terms vanished for increasing coarse grain-
ing, i.e., when the segment length � was increased. We
found that the zero-slope velocities were c = 0.49(2)mm/s
and c = 9.1(2)mm/s for the copier-paper and lens-paper
fronts, respectively, and c = 27.1(5) µm/s for the magnetic
flux fronts.

We estimated the dependence of front velocity on hig-
her-order terms by fitting the u(s) curves by nth degree
polynomials (for even n)

pn(s) = ansn + an−1s
n−2 + · · · + a2s

2 + a0 ,
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Fig. 5. Determination of λ from the slope-dependent velocity
of the interface. The average velocity of segments of copier-
paper fronts are shown as a function of s2, with s the slope of
the segment, for τ = 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 s (from
top to bottom). The plots (a)-(c) are for segment lengths 1.1,
8.7, and 17.5 mm, respectively.

where n was chosen so as to produce an optimal reduced
χ2-value. Before these fits the measured velocities were
symmetrized (u(−s) = u(s) for fronts that are governed
by KPZ dynamics) by replacing u(s) by

u(s) ≡ N(−s)u(−s) + N(s)u(s)
N(−s) + N(s)

· (15)

The polynomial fits were then done in the region [0, s ′]
with n = 2 (copier-paper and flux-front results) and n = 6
(lens-paper results). From these fits we found that λ =
0.37(3)mm/s and λ = 5.1(2)mm/s for the copier-paper
and lens-paper fronts, respectively, and λ = 17.4(2)µm/s
for the magnetic flux fronts. With f(s) = N(s)/

∑
s′ N(s)

the slope-frequency distribution, the fitting region [0, s′]
was defined so that

∫ |s′|
0

f(s) ds ≈ 0.99. It also became
evident from our fits for the lens-paper fronts that the ra-
tio of the fourth-order and second-order terms approached
that of the square-root expansion in equation (10) when
� → 0 (estimated ratio a4/a2 = −0.25(3) for � � 1.1 mm,
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Fig. 6. The average velocity of segments of lens-paper fronts
as a function of s2, with s the slope of the segment, for τ =
0.2, 0.4, 0.8, 1.6, 3.2 and 6.4 s (from top to bottom). The
plots (a)-(c) are for segment lengths 1.1, 8.8, and 17.6 mm,
respectively.

cf. Fig. 8). Including higher-order terms in the fits to the
u(s) curves gave more accurate estimates for coefficient λ.

5 Discussion

In summary, we have determined the effective coefficients
of the KPZ equation for experimental data on slow-
combustion fronts in two grades of paper, and on mag-
netic flux fronts in a high-Tc thin-film superconductor,
using partly two methods. For two of the coefficients, i.e.,
the zero-slope velocity c and the nonlinear term λ, both
these methods could be used, and the resulting estimates
were in good agreement with each others. In fact three
methods can be used to determine c as it can also be
estimated from the time evolution of the average front
height. We also obtained estimates for the ratio D/ν of
the noise correlator D and the ‘surface tension’ ν by using
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Fig. 7. The average velocity of segments of magnetic flux
fronts as a function of s2, with s the slope of the segment,
for τ = 0.1, 0.25, 0.5, 1.0, 1.5 and 2.0 s (from top to bot-
tom). The plots (a)-(c) are for segment lengths 8.4, 14.0, and
19.6 µm, respectively.
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the inverse method. For slow-combustion fronts the D/ν
thus obtained could be compared with a previous result [8]
for the asymptotic amplitude of the spatial height-height
correlation function, A = D/ν, with again good agree-
ment. In all cases this ratio was found to converge quite
well for increasing coarse-graining scales � and τ . For ν
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a τ -dependent scaling form was determined for the slow-
combustion fronts.

The parabolic dependence of the local front velocity
on the local slope of the front provides fairly direct inde-
pendent evidence of the existence of a KPZ type nonlinear
term in the evolution equation. Furthermore, higher-order
polynomial fits to the slope-dependent front velocity of the
lens-paper fronts lend some support to a square-root form
of the slope dependence, expected when driving is along
the local normal. This shows up at short length scales,
asymptotically the higher-order terms are irrelevant.

For slow-combustion fronts saturation as a function of
the coarse-graining length of the parameters appears to
be so rapid that short coarse-graining times could be used
to determine c and λ. For magnetic flux fronts saturation
is slower, but comparison of results of different methods
indicates that even then short coarse-graining times can
rather reliably be used. For these latter fronts noise av-
eraging was not extensive as all fronts were measured on
only one sample. The overall coarse-graining behaviors of
all fronts were fairly similar, and to a large extent under-
standable from the general structures of the fronts. The
difference in the nature of noise between the paper sam-
ples and the thin-film superconductor used, is expected to
explain the ‘reverse’ τ dependence in these two cases.

The inverse method used here does not seem to be
sensitive enough to handle higher-order derivatives in the
evolution equation for real experimental systems, it can-
not properly distinguish these terms from noise. This may
of course be due to decreasing statistics in the data for in-
creasing coarse-graining length. This method cannot thus
be reliably used to infer the detailed form of the evolu-
tion equation from noisy experimental data, beyond the
leading-order terms. For these leading terms the method
seems however to provide fairly reliable estimates. Com-
parison with simulation results indicates, however, that
higher-order terms are not relevant for slow-combustion
fronts in lens paper, which were used as a test case as
they had the best statistics. As the behavior of all experi-
mental fronts was qualitatively very similar, we expect the
same to hold for the other systems as well.

Increasing the spatial resolution in the imaging of the
fronts would not improve the inversion method results,
as the important question is how the model parameters
behave asymptotically as functions of the coarse-graining
length. A real limitation is that only � ≤ L/4 are meaning-
ful length scales in the analysis. A significant improvement
here does not seem possible for practical reasons. Improv-
ing the statistics would obviously make the estimates more
reliable. On the other hand, the more sophisticated inver-
sion method by Giacometti and Rossi [17] could not be
used for our experimental data at all, because the most
prominent evolution of the relevant correlation functions
occurred within a too short (with our experimental time
resolution and statistics) time window.

It may well be that more robust inversion methods
should be developed for analyzing experimental data. The
new robust filtering method used here to remove acciden-
tal defects from the recorded front lines was efficient, and

made a noticeable improvement in the quality of the re-
sults. A similar approach, which can be used as a basis for
inversion problems (cf. e.g. Ref. [19]), can also be used in
combination with different computational techniques [20].

Appendix A: Robust methods in filtering

For digital images that contain noise and other degrada-
tions due to non-Gaussian distributions and outliers, so-
called robust methods must be applied for proper restora-
tion of the true image (see, e.g., [21,22] and references
therein). The basic principle behind such methods is sim-
ple: whereas the discrete, univariate sample mean

min
µ2

N∑
i=1

|µ2 − xi|2,

i.e.,
∑N

i=1(µ
∗
2 − xi) = 0, is sensitive to the actual distance

between the estimator and the given data, the correspond-
ing median minµ1

∑N
i=1 |µ1−xi|, i.e.,

∑N
i=1 sign(µ∗

1−xi) =
0, is not.

The most commonly used robust image restoration
method is the so-called median filter which uses an a priori
chosen or adaptively determined window for locating the
seek of the median value [23]. Although this procedure is
robust for single outliers, the median filter does not con-
tain any control of the smoothness of the restored image.
This is why the obtained result typically has a staircase-
or rump-like structure for small windows, and becomes
more and more blurred when the window size increases.

We describe below in a continuous setting the main
ideas of the restoration scheme applied here. The restored
image u(x, t) is obtained as the solution of the optimiza-
tion problem

min
u

J (u) (16)

with

J (u) =
∫

Ω

[
|u − z| + β1

2

∣∣∣∣∂u

∂x

∣∣∣∣
2

+
β2

2

∣∣∣∣∂u

∂t

∣∣∣∣
2
]

dxdt, (17)

in which z represents the experimental data. The cost
functional to be minimized, equation (17), consists of
two parts. The first part introduces a robust and outlier-
insensitive fitting in L1 norm between the solution and the
noisy observation. The second part controls the regular-
ity of the solution in an orthotropic manner, and allows
to impose different behaviors in the x and t directions.
For β1, β2 > 0, J (u) is strictly convex, so that equa-
tion (16) admits a unique solution u∗ [24]. However, due
to the L1 term J (u) is nondifferentiable in the classical
sense (derivative of |x| is multivalued at x = 0) so that
ordinary optimization methods like the steepest-descents
or the conjugate-gradient method cannot be applied for
solving equation (16) [25,26].

The actual discrete counterpart of equations (16–17)
can be expressed in the form

min
u∈RN

J(u) (18)



J. Maunuksela et al.: Determination of the stochastic evolution equation from noisy experimental data 201

with

J(u) = |M(u − z)|1 +
β1

2
uT Kx u +

β2

2
uT Ky u. (19)

Here, |v|1 =
∑

i |vi| denotes the discrete l1 norm, vT the
transpose of vector v, Kx and Ky directional stiffness ma-
trices, and M the diagonal lumped mass matrix of FEM
discretization of equation (17) [27]. A heuristic interpre-
tation of equations (18–19) is that locally a median-like
value is restored, and global smoothness is assured, by
the orthotropic regularization that defines a norm which
is equivalent to the (discrete) H1 norm. The shape of the
local neighborhood and the strongness of the fitting are
both determined by the chosen values of parameters β1

and β2.

In practice, we first apply a technique similar to that
of equations (18–19) on the (1D) boundary of the experi-
mental data. These presmoothed values at the boundaries
are then used as a nonhomogeneous boundary condition in
equation (18). The actual algorithm for the robust restora-
tion of a given image z is the following.

0o Initialization: Choose β1, β2 > 0.

1o Boundary fix: Let M̃ and K̃ denote the 1D FE mass
and stiffness matrix, respectively. Solve the 1D restora-
tion problem

min
ũ

|M̃(ũ − z)|1 + β̃ũT K̃ ũ

separately on the boundary strips Γ1 = (x0, x1) × y0,
Γ2 = (x0, x1) × y1, Γ3 = x0 × (y0, y1), and
Γ4 = x1 × (y0, y1), by using stronger smooth-
ing: β̃ = 30 β1 on Γ1 ∪ Γ2 and β̃ = 30 β2

on Γ3 ∪ Γ4 (30 is a heuristic constant deter-
mined by test runs), with the observed val-
ues {z(x0, y0), z(x1, y0)}, {z(x0, y1), z(x1, y1)},
{z(x0, y0), z(x0, y1)}, and {z(x1, y0), z(x1, y1)} on the
corner points as the boundary conditions.

2o Domain fix: Solve the 2D restoration problem of
equation (18) by using the obtained values from Step
1◦ as the nonhomogeneous boundary condition.

The full details of this methods are described in [28].
Figure 9 demonstrates the effect of filtering with β1 =
β2 = 0.01 on the observed smouldering fronts in a lens-
paper burn .
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Fig. 9. Front profiles of a lens-paper burn before [h(x, t)] and
after [hfiltered(x, t)] filtering the data.
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